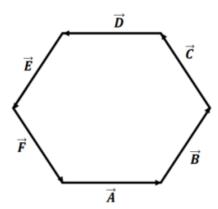

VECTOR

Question 1. Represent the following


- **a.** \hat{A} has magnitude 5 unit along x-axis. **b.** \hat{B} has magnitude 6 unit along x axis.
- c. \hat{C} has magnitude 4 unit along z axis d. \hat{m} has magnitude 6 unit along y axis.
- **e.** A vector having magnitude 3 units along \vec{D}

Question 2:- A vector of magnitude 5 units makes an angle of 30° with +ve x-axis. Find the magnitude and direction of the resultant if it is (a) multiplied by 2 (b) multiplied by -3 (c) divided by 2

Question 3:- Find the angle between \vec{A} and \vec{B} , \vec{B} and \vec{C} and \vec{C} and \vec{A}

Question 4:- Find the angle between vectors \vec{A} and \vec{B} , \vec{A} and \vec{C} , \vec{A} and \vec{D} , \vec{A} and \vec{E} , \vec{A} and \vec{F}

Note that the interior angle of a regular hexagon is 120°

ADDITION OF TWO VECTORS

Question 5:- Find the magnitude and direction of the resultant of vectors \vec{A} and \vec{B} in the following case (Draw diagram also)

- A=8 units, B=6 units, θ =0°
- A=8 units, B=6 units, θ =180°
- A=8 units, B=6 units, θ =90°
- A=8 units, B=8 units, θ =90°
- A=10 units, B=10 units, θ =120°

Question 6:- Two vectors each of magnitude 3m and 4m acts perpendicular to each other. Find the magnitude and direction of the resultant.

Question 7:- Two vectors of equal magnitude 5m each act perpendicular to each other. Find the resultant vector.

Question 8:- Two vectors of equal magnitude 4 units each acts at an angle of 60° with each other. Find the resultant vector.

Question 9:- Two vectors of equal magnitude 3 units each acts an angle 120° with each other. Find the resultant.

Question 10:- A car travels 8m due north and 6m due west. Find the magnitude and direction of the net displacement.

Question 11:- Two forces 5N and 12N act along east and north respectively. Find the magnitude and direction of their resultant.

Question 12:- the greatest and least resultant of two forces acting at a point of is 10N and 6N resp. If each force is increased by 3N. Find the resultant (Magnitude) of the new force when acting at a point at an angle of 90° with each other.

Question 13:- Two equal forces have their resultant equal to either. Find the angle between them.

Question 14:- Two forces whose magnitude is in the ratio 3:5, give a resultant of 28N. If the angle between them is 60° , find the magnitude of each force.

Question 15:- A vector \vec{A} makes an angle of 20° and \vec{B} makes an angle of 110° with the x-axis. The magnitude of these vectors is 3m and 4m resp. Find the resultant.

Question 16:- if $|\vec{A} + \vec{B}| = A + B$ find the angle between \vec{A} and \vec{B}

Question 17:- The maximum and minimum magnitude of the resultant of two vectors of magnitude P and Q are in the ratio of 3:1. Find the relation between P and Q.

Question 18:- Which pair of the following forces will never give the resultant force of 2N? (a) 2N and 2N (b) 1N and 1N (c) 1n and 3N (d) 1N and 4N

Question 19:- The sum of the magnitudes of two forces acting at a point is 18N and the magnitude of their resultant is 12N. If the resultant is at 90° with a force of smaller magnitude, what are the magnitudes of forces?

Question 20:- At what angle should the two force 2F and $\sqrt{2}F$ acts so that the resultant force is $\sqrt{10}F$?

Question 21:-The resultant of the two forces has a magnitude of $20 \,\text{N}$. One of the forces is of magnitude $20 \,\sqrt{3} \,\text{N}$ and makes an angle of 30° with the resultant. Then what is the magnitude of the other force?

Question 22:- Vector \vec{A} is 2cm long and is 60° above the x-axis in the first quadrant. Vector \vec{B} is 2cm long and is 60° below the x-axis in the 4th quadrant. Find the resultant of $\vec{A} + \vec{B}$.

Question 23:- The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} . Magnitude of resultant \vec{R} is equal to half magnitude of \vec{B} . Find the angle between \vec{A} and \vec{B} .

Question 24:- The sum of the magnitudes of two forces acting at a point is 16N. If their resultant is normal to the smaller force and has a magnitude of 8N. Find the forces.

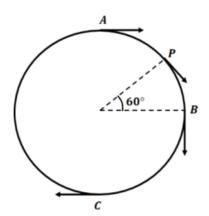
Question 25:- \vec{A} and \vec{B} are two vectors such that $\vec{A} < \vec{B}$. The resultant of \vec{A} and \vec{B} is of magnitude 20 and acts at a right angle to vector \vec{A} . The angle between \vec{A} and \vec{B} is 150°. Find the magnitude of \vec{A} and \vec{B} .

Question 26:- The maximum and minimum values of the resultant of two vectors are respectively 10 and 6 units. Find the magnitude of individual vectors.

SUBTRACTION OF VECTORS

Question 27:- Vector \vec{A} and \vec{B} are given which is perpendicular to each other. Draw the resultant of the following.

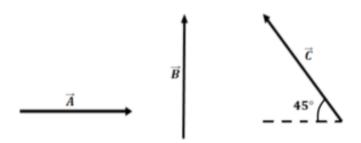
(a)
$$\vec{A} + 2\vec{B}$$
(b) $\vec{A} - 2\vec{B}$ (c) $2\vec{A} + \vec{B}$ (d) $2\vec{A} - \vec{B}$ (e) $\vec{B} - \frac{\vec{A}}{2}$


Question 28:- If two vectors \vec{A} and \vec{B} having magnitude 3N and 4N and the angle between them is 60°. Find $|\vec{A} - 2\vec{B}|$

Question 29:- The resultant of two unit vectors is a unit vector. Find the magnitude of the difference between the two unit vectors.

Question 30:- two vectors of equal magnitude 5 units have an angle 60° between them. Find the magnitude of

- (a) The sum of the vectors
- **(b)** the difference between the vectors


Question 31:- A car is moving on a circular track with constant speed v=20 m/s. Find the change in velocity

(a) From A to C (b) From A to B (c) From A to P

Question 32:- Vector \vec{A} has a magnitude of 10 units and points towards the west, while \vec{B} has the same magnitude and points towards the south. Find the magnitude and direction of $\vec{A} + \vec{B}$ and $\vec{A} - \vec{B}$. Specify the direction relative to due west.

Question 33:-

Draw the resultant of the following

(a)
$$\vec{R} = \vec{A} + \vec{B} + \vec{C}$$
 (b) $\vec{R} = \vec{A} + \vec{B} - \vec{C}$ (c) $\vec{R} = \vec{A} - \vec{B} - \vec{C}$ (d) $\vec{R} = \vec{A} - \vec{B} + \vec{C}$ (e) $\vec{R} = -\vec{A} - \vec{B} + \vec{C}$