VECTOR

Question 1. Represent the following
a. Âhas magnitude 5 unit along x -axis.
b. \hat{B} has magnitude 6 unit along - x axis.
c. Ĉhas magnitude 4 unit along - z axis
d. \hat{m} has magnitude 6 unit along y axis.
e. A vector having magnitude 3 units along \vec{D}

Question 2:- A vector of magnitude 5 units makes an angle of 30° with +ve x-axis. Find the magnitude and direction of the resultant if it is (a) multiplied by 2 (b) multiplied by -3 (c) divided by 2

Question 3:- Find the angle between \vec{A} and \vec{B}, \vec{B} and \vec{C} and \vec{C} and \vec{A}

Question 4:- Find the angle between vectors \vec{A} and \vec{B}, \vec{A} and \vec{C}, \vec{A} and \vec{D}, \vec{A} and \vec{E}, \vec{A} and \vec{F}

Note that the interior angle of a regular hexagon is 120°

ADDITION OF TWO VECTORS

Question 5:- Find the magnitude and direction of the resultant of vectors \vec{A} and \vec{B} in the following case (Draw diagram also)

- $A=8$ units, $B=6$ units, $\theta=0^{\circ}$
- $A=8$ units, $B=6$ units, $\theta=180^{\circ}$
- $\mathrm{A}=8$ units, $\mathrm{B}=6$ units, $\theta=90^{\circ}$
- $\mathrm{A}=8$ units, $\mathrm{B}=8$ units, $\theta=90^{\circ}$
- $\mathrm{A}=10$ units, $\mathrm{B}=10$ units, $\theta=120^{\circ}$

Question 6:- Two vectors each of magnitude 3 m and 4 m acts perpendicular to each other. Find the magnitude and direction of the resultant.

Question 7:- Two vectors of equal magnitude 5 m each act perpendicular to each other. Find the resultant vector.

Question 8:- Two vectors of equal magnitude 4 units each acts at an angle of 60° with each other. Find the resultant vector.

Question 9:- Two vectors of equal magnitude 3 units each acts an angle 120° with each other. Find the resultant.

Question 10:- A car travels 8 m due north and 6 m due west. Find the magnitude and direction of the net displacement.

Question 11:- Two forces 5 N and 12 N act along east and north respectively. Find the magnitude and direction of their resultant.

Question 12:- the greatest and least resultant of two forces acting at a point of is 10 N and 6 N resp. If each force is increased by 3 N . Find the resultant (Magnitude) of the new force when acting at a point at an angle of 90° with each other.

Question 13:- Two equal forces have their resultant equal to either. Find the angle between them.
Question 14:- Two forces whose magnitude is in the ratio 3:5, give a resultant of 28 N . If the angle between them is 60°, find the magnitude of each force.

Question 15:- A vector \vec{A} makes an angle of 20° and \vec{B} makes an angle of 110° with the x -axis. The magnitude of these vectors is 3 m and 4 m resp. Find the resultant.

Question 16:- if $|\vec{A}+\vec{B}|=A+B$ find the angle between \vec{A} and \vec{B}
Question 17:- The maximum and minimum magnitude of the resultant of two vectors of magnitude P and Q are in the ratio of 3:1. Find the relation between P and Q.

Question 18:- Which pair of the following forces will never give the resultant force of 2 N ? (a) 2 N and 2 N (b) 1 N and 1 N (c) 1 n and 3 N (d) 1 N and 4 N

Question 19:- The sum of the magnitudes of two forces acting at a point is 18 N and the magnitude of their resultant is 12 N . If the resultant is at 90° with a force of smaller magnitude, what are the magnitudes of forces?

Question 20:- At what angle should the two force $2 F$ and $\sqrt{2} F$ acts so that the resultant force is $\sqrt{10} F$?
Question 21:-The resultant of the two forces has a magnitude of 20 N . One of the forces is of magnitude $20 \sqrt{3} N$ and makes an angle of 30° with the resultant. Then what is the magnitude of the other force?

Question 22:- Vector \vec{A} is 2 cm long and is 60° above the x -axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x -axis in the 4th quadrant. Find the resultant of $\vec{A}+\vec{B}$.

Question 23:- The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A}. Magnitude of resultant \vec{R} is equal to half magnitude of \vec{B}. Find the angle between \vec{A} and \vec{B}.

Question 24:- The sum of the magnitudes of two forces acting at a point is 16 N . If their resultant is normal to the smaller force and has a magnitude of 8 N . Find the forces.

Question 25:- \vec{A} and \vec{B} are two vectors such that $A<B$. The resultant of \vec{A} and \vec{B} is of magnitude 20 and acts at a right angle to vector \vec{A}. The angle between \vec{A} and \vec{B} is 150°. Find the magnitude of \vec{A} and \vec{B}.

Question 26:- The maximum and minimum values of the resultant of two vectors are respectively 10 and 6 units. Find the magnitude of individual vectors.

SUBTRACTION OF VECTORS

Question 27:- Vector \vec{A} and \vec{B} are given which is perpendicular to each other. Draw the resultant of the following.
(a) $\vec{A}+2 \vec{B}\left(\right.$ b) $\vec{A}-2 \vec{B}\left(\right.$ c) $2 \vec{A}+\vec{B}(\mathbf{d}) 2 \vec{A}-\vec{B}\left(\right.$ e) $\vec{B}-\frac{\vec{A}}{2}$

Question 28:- If two vectors \vec{A} and \vec{B} having magnitude 3 N and 4 N and the angle between them is 60°. Find $|\vec{A}-2 \vec{B}|$

Question 29:- The resultant of two unit vectors is a unit vector. Find the magnitude of the difference between the two unit vectors.

Question 30:- two vectors of equal magnitude 5 units have an angle 60° between them. Find the magnitude of
(a) The sum of the vectors
(b) the difference between the vectors

Question 31:- A car is moving on a circular track with constant speed $v=20 \mathrm{~m} / \mathrm{s}$. Find the change in velocity

(a) From A to C (b) From A to B (c) From A to P

Question 32:- Vector \vec{A} has a magnitude of 10 units and points towards the west, while \vec{B} has the same magnitude and points towards the south. Find the magnitude and direction of $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$. Specify the direction relative to due west.

Question 33:-

Draw the resultant of the following
(a) $\vec{R}=\vec{A}+\vec{B}+\vec{C}$ (b) $\vec{R}=\vec{A}+\vec{B}-\vec{C}$ (c) $\vec{R}=\vec{A}-\vec{B}-\vec{C}$ (d) $\vec{R}=\vec{A}-\vec{B}+\vec{C}$ (e) $\vec{R}=-\vec{A}-\vec{B}+\vec{C}$

